Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Med ; 11(10)2022 May 11.
Article in English | MEDLINE | ID: covidwho-1855681

ABSTRACT

We conducted a prospective single-center observational study to determine lung ultrasound reliability in assessing global lung aeration in 38 hospitalized patients with non-critical COVID-19. On admission, fixed chest CT scans using visual (CTv) and software-based (CTs) analyses along with lung ultrasound imaging protocols and scoring systems were applied. The primary endpoint was the correlation between global chest CTs score and global lung ultrasound score. The secondary endpoint was the association between radiographic features and clinical disease classification or laboratory indices of inflammation. Bland-Altman analysis between chest CT scores obtained visually (CTv) or using software (CTs) indicated that only 1 of the 38 paired measures was outside the 95% limits of agreement (-4 to +4 score). Global lung ultrasound score was highly and positively correlated with global software-based CTs score (r = 0.74, CI = 0.55-0.86; p < 0.0001). Significantly higher median CTs score (p = 0.01) and lung ultrasound score (p = 0.02) were found in severe compared to moderate COVID-19. Furthermore, we identified significantly lower (p < 0.05) lung ultrasound and CTs scores in those patients with a more severe clinical condition manifested by SpO2 < 92% and C-reactive protein > 58 mg/L. We concluded that lung ultrasound is a reliable bedside clinical tool to assess global lung aeration in hospitalized non-critical care patients with COVID-19 pneumonia.

2.
Nat Commun ; 12(1): 6243, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1493101

ABSTRACT

Understanding the pathology of COVID-19 is a global research priority. Early evidence suggests that the respiratory microbiome may be playing a role in disease progression, yet current studies report contradictory results. Here, we examine potential confounders in COVID-19 respiratory microbiome studies by analyzing the upper (n = 58) and lower (n = 35) respiratory tract microbiome in well-phenotyped COVID-19 patients and controls combining microbiome sequencing, viral load determination, and immunoprofiling. We find that time in the intensive care unit and type of oxygen support, as well as associated treatments such as antibiotic usage, explain the most variation within the upper respiratory tract microbiome, while SARS-CoV-2 viral load has a reduced impact. Specifically, mechanical ventilation is linked to altered community structure and significant shifts in oral taxa previously associated with COVID-19. Single-cell transcriptomics of the lower respiratory tract of COVID-19 patients identifies specific oral bacteria in physical association with proinflammatory immune cells, which show higher levels of inflammatory markers. Overall, our findings suggest confounders are driving contradictory results in current COVID-19 microbiome studies and careful attention needs to be paid to ICU stay and type of oxygen support, as bacteria favored in these conditions may contribute to the inflammatory phenotypes observed in severe COVID-19 patients.


Subject(s)
COVID-19/microbiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Humans , Microbiota/physiology , SARS-CoV-2/pathogenicity , Transcriptome/genetics
4.
Cell Res ; 31(3): 272-290, 2021 03.
Article in English | MEDLINE | ID: covidwho-1039635

ABSTRACT

How the innate and adaptive host immune system miscommunicate to worsen COVID-19 immunopathology has not been fully elucidated. Here, we perform single-cell deep-immune profiling of bronchoalveolar lavage (BAL) samples from 5 patients with mild and 26 with critical COVID-19 in comparison to BALs from non-COVID-19 pneumonia and normal lung. We use pseudotime inference to build T-cell and monocyte-to-macrophage trajectories and model gene expression changes along them. In mild COVID-19, CD8+ resident-memory (TRM) and CD4+ T-helper-17 (TH17) cells undergo active (presumably antigen-driven) expansion towards the end of the trajectory, and are characterized by good effector functions, while in critical COVID-19 they remain more naïve. Vice versa, CD4+ T-cells with T-helper-1 characteristics (TH1-like) and CD8+ T-cells expressing exhaustion markers (TEX-like) are enriched halfway their trajectories in mild COVID-19, where they also exhibit good effector functions, while in critical COVID-19 they show evidence of inflammation-associated stress at the end of their trajectories. Monocyte-to-macrophage trajectories show that chronic hyperinflammatory monocytes are enriched in critical COVID-19, while alveolar macrophages, otherwise characterized by anti-inflammatory and antigen-presenting characteristics, are depleted. In critical COVID-19, monocytes contribute to an ATP-purinergic signaling-inflammasome footprint that could enable COVID-19 associated fibrosis and worsen disease-severity. Finally, viral RNA-tracking reveals infected lung epithelial cells, and a significant proportion of neutrophils and macrophages that are involved in viral clearance.


Subject(s)
Adaptive Immunity , Bronchoalveolar Lavage , COVID-19/diagnosis , COVID-19/immunology , Immunity, Innate , Single-Cell Analysis , Bronchoalveolar Lavage Fluid , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cell Communication , Gene Expression Profiling , Humans , Lung/virology , Macrophages, Alveolar/cytology , Monocytes/cytology , Neutrophils/cytology , Phenotype , Principal Component Analysis , RNA-Seq , Th17 Cells/cytology
5.
Am J Transplant ; 20(11): 3234-3238, 2020 11.
Article in English | MEDLINE | ID: covidwho-640838

ABSTRACT

Several case reports and small case series have been published on coronavirus disease 2019 infection after solid organ transplantation; however, thus far there are limited data on coronavirus disease 2019 infections in lung transplant patients. In the present single-center case series we discuss 10 lung transplant patients with a documented severe acute respiratory syndrome coronavirus 2 infection, diagnosed with nasopharyngeal swab in 8 and bronchoalveolar lavage in 2. Eight of 10 patients needed hospital admission, of whom 1 was in the intensive care unit. He died after 2 weeks from multiple organ failure. The remaining nine patients recovered. Cell cycle inhibitors were withheld in all patients, whereas the calcineurin inhibitor and corticosteroids were continued at the same dose, with an acceptable outcome.


Subject(s)
COVID-19/epidemiology , Lung Transplantation/methods , Respiratory Insufficiency/surgery , SARS-CoV-2 , Transplant Recipients , Adult , Aged , Belgium/epidemiology , Comorbidity , Female , Humans , Male , Middle Aged , Pandemics , Respiratory Insufficiency/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL